Yaskawa MP900 Series Ladder Programming Manual Manuel d'utilisateur

Naviguer en ligne ou télécharger Manuel d'utilisateur pour Équipement Yaskawa MP900 Series Ladder Programming Manual. Yaskawa MP900 Series Ladder Programming Manual User Manual Manuel d'utilisatio

  • Télécharger
  • Ajouter à mon manuel
  • Imprimer
  • Page
    / 415
  • Table des matières
  • DEPANNAGE
  • MARQUE LIVRES
  • Noté. / 5. Basé sur avis des utilisateurs
Vue de la page 0
Machine Controller MP2000 Series
MANUAL NO. SIE-C887-1.2D
USER'S MANUAL
LADDER PROGRAMMING
1
2
3
4
5
6
7
Introduction to Ladder
Programming
Specifications for Ladder
Programs
Ladder Program Development
Flow
Programming
Instructions
Features of the MPE720
Engineering Tool
Troubleshooting
System Registers
CP (Previous) Ladder Instructions
and New Ladder Instructions
Sample Programming
Format for EXPRESSION
Instruction
Precautions
AppB
AppA
AppC
AppD
AppE
Vue de la page 0
1 2 3 4 5 6 ... 414 415

Résumé du contenu

Page 1 - LADDER PROGRAMMING

Machine Controller MP2000 SeriesMANUAL NO. SIE-C887-1.2DUSER'S MANUALLADDER PROGRAMMING1234567Introduction to Ladder ProgrammingSpecifications

Page 2

xContentsAbout this Manual- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - iiiUsing

Page 3 - MP2000-series Manuals

5.3 Numeric Operation Instructions5.3.5 Extended Subtract (SUBX (− −))5-31Instructions5( 3 ) Programming ExamplesIn the following programming exampl

Page 4 -  Related Manuals

5.3 Numeric Operation Instructions5.3.6 Multiply (MUL (x))5-325.3.6 Multiply (MUL (x))( 1 ) OperationInput data A and input data B are multiplied a

Page 5

5.3 Numeric Operation Instructions5.3.6 Multiply (MUL (x))5-33Instructions5• Storing the Output Data in ML00000 When Input Data A in MW00002 Is 200

Page 6 - Safety Information

5.3 Numeric Operation Instructions5.3.7 Divide (DIV (÷))5-345.3.7 Divide (DIV (÷))( 1 ) OperationInput data A is divided by input data B and the re

Page 7 - Safety Precautions

5.3 Numeric Operation Instructions5.3.7 Divide (DIV (÷))5-35Instructions5( 3 ) Programming ExamplesIn the following programming examples, input data

Page 8 - Warranty

5.3 Numeric Operation Instructions5.3.8 Integer Remainder (MOD)5-365.3.8 Integer Remainder (MOD)( 1 ) OperationThe remainder of the immediately pre

Page 9 - ( 4 ) Specifications Change

5.3 Numeric Operation Instructions5.3.8 Integer Remainder (MOD)5-37Instructions5( 3 ) Programming ExamplesIn the following programming examples, inp

Page 10 - Contents

5.3 Numeric Operation Instructions5.3.9 Real Remainder (REM)5-385.3.9 Real Remainder (REM)( 1 ) OperationThe remainder from a real number division

Page 11

5.3 Numeric Operation Instructions5.3.9 Real Remainder (REM)5-39Instructions5( 3 ) Programming ExamplesIn the following programming examples, the ba

Page 12

5.3 Numeric Operation Instructions5.3.10 Increment (INC)5-405.3.10 Increment (INC)( 1 ) OperationA value of 1 is added to the integer or double-len

Page 13

xi4.4 Registers (Variables)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-134.4.1 What Are Registers? - - -

Page 14

5.3 Numeric Operation Instructions5.3.10 Increment (INC)5-41Instructions5( 3 ) Programming ExamplesThe following programming examples achieve the sa

Page 15 - Revision History

5.3 Numeric Operation Instructions5.3.11 Decrement (DEC)5-425.3.11 Decrement (DEC)( 1 ) OperationA value of 1 is subtracted from the integer or dou

Page 16

5.3 Numeric Operation Instructions5.3.11 Decrement (DEC)5-43Instructions5( 3 ) Programming ExamplesThe following programming examples achieve the sa

Page 17

5.3 Numeric Operation Instructions5.3.12 Add Time (TMADD)5-445.3.12 Add Time (TMADD)( 1 ) OperationA duration (hours/minutes/seconds) is added to a

Page 18 - Controllers

5.3 Numeric Operation Instructions5.3.12 Add Time (TMADD)5-45Instructions5( 3 ) Programming ExampleThe following table gives typical conditions for

Page 19 - 1.2.2 Program Modules

5.3 Numeric Operation Instructions5.3.13 Subtract Time (TMSUB)5-465.3.13 Subtract Time (TMSUB)( 1 ) OperationA duration (hours/minutes/seconds) is

Page 20 - SIEP C880732 01) for details

5.3 Numeric Operation Instructions5.3.13 Subtract Time (TMSUB)5-47Instructions5( 3 ) Programming ExampleThe following table gives typical conditions

Page 21

5.3 Numeric Operation Instructions5.3.14 Spend Time (SPEND)5-485.3.14 Spend Time (SPEND)( 1 ) OperationThe elapsed time is calculated by subtractin

Page 22

5.3 Numeric Operation Instructions5.3.14 Spend Time (SPEND)5-49Instructions5Time data B is formatted as shown below.Time data A is formatted as show

Page 23

5.3 Numeric Operation Instructions5.3.14 Spend Time (SPEND)5-50The execution result of this SPEND instruction example is shown below.Time A after Ex

Page 24

xii5.4 Logic Operations and Comparison Instructions - - - - - - - - - - - - - - - - - - - - - - - 5-635.4.1 Inclusive AND (AND) - - - - - - - -

Page 25

5.3 Numeric Operation Instructions5.3.15 Invert Sign (INV)5-51Instructions55.3.15 Invert Sign (INV)( 1 ) OperationThe sign of the input data is inv

Page 26

5.3 Numeric Operation Instructions5.3.16 One’s Complement (COM)5-525.3.16 One’s Complement (COM)( 1 ) OperationThe one’s complement of the input da

Page 27

5.3 Numeric Operation Instructions5.3.17 Absolute Value (ABS)5-53Instructions55.3.17 Absolute Value (ABS)( 1 ) OperationThe absolute value of the i

Page 28

5.3 Numeric Operation Instructions5.3.18 Binary Conversion (BIN)5-545.3.18 Binary Conversion (BIN)( 1 ) OperationThe value of the input data is con

Page 29

5.3 Numeric Operation Instructions5.3.19 BCD Conversion (BCD)5-55Instructions55.3.19 BCD Conversion (BCD)( 1 ) OperationThe input data is converted

Page 30 - Optional Module

5.3 Numeric Operation Instructions5.3.20 Parity Conversion (PARITY)5-565.3.20 Parity Conversion (PARITY)( 1 ) OperationThe number of bits set to 1

Page 31 - 3.1.4 System Startup

5.3 Numeric Operation Instructions5.3.21 ASCII Conversion 1 (ASCII)5-57Instructions55.3.21 ASCII Conversion 1 (ASCII)( 1 ) OperationThe input text

Page 32 - 3.1.5 Creating a Project

5.3 Numeric Operation Instructions5.3.21 ASCII Conversion 1 (ASCII)5-58( 3 ) Programming ExampleIn the following programming example, the input stri

Page 33 - 2. Click the OK Button

5.3 Numeric Operation Instructions5.3.22 ASCII Conversion 2 (BINASC)5-59Instructions55.3.22 ASCII Conversion 2 (BINASC)( 1 ) OperationThe 16-bit bi

Page 34 - Drag and drop

5.3 Numeric Operation Instructions5.3.22 ASCII Conversion 2 (BINASC)5-60( 3 ) Programming ExampleIn the following programming example, 10,811 (2A3B

Page 35 - IMPORTANT

xiii5.8.7 First-order Lag (LAG)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-1615.8.8 Pha

Page 36

5.3 Numeric Operation Instructions5.3.23 ASCII Conversion 3 (ASCBIN)5-61Instructions55.3.23 ASCII Conversion 3 (ASCBIN)( 1 ) OperationThe value giv

Page 37

5.3 Numeric Operation Instructions5.3.23 ASCII Conversion 3 (ASCBIN)5-62( 3 ) Programming ExampleIn the following programming example, the ASCBIN in

Page 38 - Enter “MB000000.”

5.4 Logic Operations and Comparison Instructions5.4.1 Inclusive AND (AND)5-63Instructions55.4 Logic Operations and Comparison Instructions5.4.1 In

Page 39

5.4 Logic Operations and Comparison Instructions5.4.1 Inclusive AND (AND)5-64( 3 ) Programming ExampleIn the following programming example, a logica

Page 40

5.4 Logic Operations and Comparison Instructions5.4.2 Inclusive OR (OR)5-65Instructions55.4.2 Inclusive OR (OR)( 1 ) OperationThe OR instruction pe

Page 41 - 2. Click the Start Button

5.4 Logic Operations and Comparison Instructions5.4.2 Inclusive OR (OR)5-66( 3 ) Programming ExampleIn the following programming example, a logical

Page 42 - Programming

5.4 Logic Operations and Comparison Instructions5.4.3 Exclusive OR (XOR)5-67Instructions55.4.3 Exclusive OR (XOR)( 1 ) OperationThe XOR instruction

Page 43 - 4.1 Ladder Program Editor

5.4 Logic Operations and Comparison Instructions5.4.3 Exclusive OR (XOR)5-68( 3 ) Programming ExampleIn the following programming example, an exclus

Page 44 - 4.2 Ladder Drawings

5.4 Logic Operations and Comparison Instructions5.4.4 Less Than (<)5-69Instructions55.4.4 Less Than (<)( 1 ) OperationInput data A and input

Page 45

5.4 Logic Operations and Comparison Instructions5.4.5 Less Than or Equal (≤)5-705.4.5 Less Than or Equal (≤)( 1 ) OperationInput data A and input d

Page 46

xiv7.2 Indicator Status - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-37.3 Problem Classificati

Page 47

5.4 Logic Operations and Comparison Instructions5.4.6 Equal (=)5-71Instructions55.4.6 Equal (=)( 1 ) OperationInput data A and input data B are com

Page 48 - 4.3 User Functions

5.4 Logic Operations and Comparison Instructions5.4.7 Not Equal (≠)5-725.4.7 Not Equal (≠)( 1 ) OperationInput data A and input data B are compared

Page 49

5.4 Logic Operations and Comparison Instructions5.4.8 Greater Than or Equal (≥)5-73Instructions55.4.8 Greater Than or Equal (≥)( 1 ) OperationInput

Page 50 - Enter “FUNC01.”

5.4 Logic Operations and Comparison Instructions5.4.9 Greater Than (>)5-745.4.9 Greater Than (>)( 1 ) OperationInput data A and input data B

Page 51

5.4 Logic Operations and Comparison Instructions5.4.10 Range Check (RCHK)5-75Instructions55.4.10 Range Check (RCHK)( 1 ) OperationThe RCHK instruct

Page 52

5.4 Logic Operations and Comparison Instructions5.4.10 Range Check (RCHK)5-76( 3 ) Programming ExamplesThe following programming examples execute th

Page 53

5.5 Program Control Instructions5.5.1 Call Sequence Program (SEE)5-77Instructions55.5 Program Control Instructions5.5.1 Call Sequence Program (SEE

Page 54 - 4.4 Registers (Variables)

5.5 Program Control Instructions5.5.2 Call Motion Program (MSEE)5-785.5.2 Call Motion Program (MSEE)( 1 ) OperationThe MSEE instruction calls the s

Page 55 - 4.4.2 Register Types

5.5 Program Control Instructions5.5.2 Call Motion Program (MSEE)5-79Instructions5( 3 ) Programming ExamplesThe following programming examples show h

Page 56 - ( 2 ) Local Registers

5.5 Program Control Instructions5.5.3 Call User Function (FUNC)5-805.5.3 Call User Function (FUNC)( 1 ) OperationThe FUNC instruction calls a user

Page 57

xvD.2 National Limitations - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D-5D.2.1 Arithmetic Operators -

Page 58 - 4.4.3 Data Types

5.5 Program Control Instructions5.5.4 Direct Input String (INS)5-81Instructions55.5.4 Direct Input String (INS)( 1 ) OperationThe INS instruction i

Page 59

5.5 Program Control Instructions5.5.4 Direct Input String (INS)5-82 Parameter Table ConfigurationThe following table gives details about the parame

Page 60 - 4.4.4 Index Registers (i, j)

5.5 Program Control Instructions5.5.4 Direct Input String (INS)5-83Instructions5( 3 ) Programming ExampleWhen one word is input from the LIO at subs

Page 61

5.5 Program Control Instructions5.5.5 Direct Output String (OUTS)5-845.5.5 Direct Output String (OUTS)( 1 ) OperationThe OUTS instruction is execut

Page 62 - 4.5 Table Data

5.5 Program Control Instructions5.5.5 Direct Output String (OUTS)5-85Instructions5 Parameter Table ConfigurationThe following table gives details a

Page 63 - 4.5.2 Creating Table Data

5.5 Program Control Instructions5.5.5 Direct Output String (OUTS)5-86( 3 ) Programming ExampleWhen one word is output to the LIO at subslot number 1

Page 64 - 4.6 Transferring Data

5.5 Program Control Instructions5.5.6 Call Extended Program (XCALL)5-87Instructions55.5.6 Call Extended Program (XCALL)( 1 ) OperationAn extended p

Page 65

5.5 Program Control Instructions5.5.7 WHILE Construct (WHILE, END_WHILE)5-885.5.7 WHILE Construct (WHILE, END_WHILE)( 1 ) OperationThe programming

Page 66 - 4.8 Advanced Programming

5.5 Program Control Instructions5.5.7 WHILE Construct (WHILE, END_WHILE)5-89Instructions5( 3 ) Programming ExampleIn the following programming examp

Page 67 - 4.8.2 C-language Programs

5.5 Program Control Instructions5.5.7 WHILE Construct (WHILE, END_WHILE)5-90( 4 ) Additional Information[ a ] Applicable Conditional ExpressionsThe

Page 68 -  Online Security Setting

1-1Introduction to Ladder Programming11Introduction to Ladder ProgrammingThis chapter gives an overview of ladder programming and describes its featur

Page 69 -  XY Tracing

5.5 Program Control Instructions5.5.8 FOR Construct (FOR, END_FOR)5-91Instructions55.5.8 FOR Construct (FOR, END_FOR)( 1 ) OperationThe programming

Page 70

5.5 Program Control Instructions5.5.8 FOR Construct (FOR, END_FOR)5-92( 3 ) Programming ExampleIn the following programming example, the registers f

Page 71

5.5 Program Control Instructions5.5.9 IF Construct (IF, END_IF)5-93Instructions55.5.9 IF Construct (IF, END_IF)( 1 ) OperationExecution of the prog

Page 72

5.5 Program Control Instructions5.5.9 IF Construct (IF, END_IF)5-94( 3 ) Programming ExampleWhen the conditional expression (MB000001) for the IF in

Page 73

5.5 Program Control Instructions5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)5-95Instructions55.5.10 IF-ELSE Construct (IF, ELSE, END_IF)( 1 ) Operat

Page 74 - 5.2.1 NO Contact (NOC)

5.5 Program Control Instructions5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)5-96( 3 ) Programming ExampleWhen the conditional expression (MB000001) f

Page 75 - 5.2.2 NC Contact (NCC)

5.5 Program Control Instructions5.5.11 Expression (EXPRESSION)5-97Instructions55.5.11 Expression (EXPRESSION)( 1 ) OperationYou can use the followi

Page 76

5.5 Program Control Instructions5.5.11 Expression (EXPRESSION)5-98( 3 ) Programming ExampleIn the following programming example, multiple operations

Page 77

5.6 Basic Function Instructions5.6.1 Square Root (SQRT)5-99Instructions55.6 Basic Function Instructions5.6.1 Square Root (SQRT) ( 1 ) OperationThe

Page 78

5.6 Basic Function Instructions5.6.1 Square Root (SQRT)5-100( 3 ) Programming ExamplesThe following programming examples demonstrate the SQRT instru

Page 79

1.1 What Is a Ladder Program? 1-21.1 What Is a Ladder Program?A ladder program uses ladder instructions and registers to symbolically represent ele

Page 80

5.6 Basic Function Instructions5.6.2 Sine (SIN)5-101Instructions55.6.2 Sine (SIN)( 1 ) OperationThe SIN instruction calculates the sine of the inte

Page 81

5.6 Basic Function Instructions5.6.2 Sine (SIN)5-102( 3 ) Programming ExamplesThe following programming examples demonstrate the SIN instruction usi

Page 82

5.6 Basic Function Instructions5.6.3 Cosine (COS)5-103Instructions55.6.3 Cosine (COS)( 1 ) OperationThe COS instruction calculates the cosine of th

Page 83

5.6 Basic Function Instructions5.6.3 Cosine (COS)5-104( 3 ) Programming ExamplesThe following programming examples demonstrate the COS instruction u

Page 84

5.6 Basic Function Instructions5.6.4 Tangent (TAN)5-105Instructions55.6.4 Tangent (TAN)( 1 ) OperationThe TAN instruction calculates the tangent of

Page 85

5.6 Basic Function Instructions5.6.5 Arc Sine (ASIN)5-1065.6.5 Arc Sine (ASIN)( 1 ) OperationThe ASIN instruction calculates the arc sine of the re

Page 86

5.6 Basic Function Instructions5.6.6 Arc Cosine (ACOS)5-107Instructions55.6.6 Arc Cosine (ACOS)( 1 ) OperationThe ACOS instruction calculates the a

Page 87

5.6 Basic Function Instructions5.6.7 Arc Tangent (ATAN)5-1085.6.7 Arc Tangent (ATAN)( 1 ) OperationThe ATAN instruction calculates the arc tangent

Page 88 - 5.2.9 Coil (COIL)

5.6 Basic Function Instructions5.6.8 Exponential (EXP)5-109Instructions55.6.8 Exponential (EXP)( 1 ) OperationThe EXP instruction calculates the va

Page 89 - 5.2.10 Set Coil (S-COIL)

5.6 Basic Function Instructions5.6.9 Natural Logarithm (LN)5-1105.6.9 Natural Logarithm (LN)( 1 ) OperationThe LN instruction calculates the natura

Page 90 - 5.2.11 Reset Coil (R-COIL)

1.2 Features of Ladder Programming for MP2000-series Machine Controllers1.2.1 Types of Ladder Drawings and Their Different Execution Timing1-3Introd

Page 91 - 5.3.1 Store (STORE)

5.6 Basic Function Instructions5.6.10 Common Logarithm (LOG)5-111Instructions55.6.10 Common Logarithm (LOG)( 1 ) OperationThe LOG instruction calcu

Page 92

5.7 Data Shift Instructions5.7.1 Bit Rotate Left (ROTL)5-1125.7 Data Shift Instructions5.7.1 Bit Rotate Left (ROTL)( 1 ) OperationThe ROTL instruc

Page 93 - 5.3.2 Add (ADD (+))

5.7 Data Shift Instructions5.7.1 Bit Rotate Left (ROTL)5-113Instructions5( 3 ) Programming ExampleIn the following programming example, the data spe

Page 94

5.7 Data Shift Instructions5.7.2 Bit Rotate Right (ROTR)5-1145.7.2 Bit Rotate Right (ROTR)( 1 ) OperationThe ROTR instruction rotates the data spec

Page 95

5.7 Data Shift Instructions5.7.2 Bit Rotate Right (ROTR)5-115Instructions5( 3 ) Programming ExampleIn the following programming example, the data sp

Page 96

5.7 Data Shift Instructions5.7.3 Move Bit (MOVB)5-1165.7.3 Move Bit (MOVB)( 1 ) OperationThe MOVB instruction moves the designated number of bits o

Page 97 - 5.3.4 Subtract (SUB (−))

5.7 Data Shift Instructions5.7.3 Move Bit (MOVB)5-117Instructions5( 2 ) Format∗ C and # registers cannot be used.( 3 ) Programming ExampleIn the fol

Page 98

5.7 Data Shift Instructions5.7.4 Move Word (MOVW)5-1185.7.4 Move Word (MOVW)( 1 ) OperationThe MOVW instruction moves the specified number of words

Page 99

5.7 Data Shift Instructions5.7.4 Move Word (MOVW)5-119Instructions5( 2 ) Format∗ C and # registers cannot be used.( 3 ) Programming ExampleIn the fo

Page 100 - ( 3 ) Programming Examples

5.7 Data Shift Instructions5.7.5 Exchange (XCHG)5-1205.7.5 Exchange (XCHG)( 1 ) OperationThe XCHG instruction exchanges the designated number of wo

Page 101 - 5.3.6 Multiply (MUL (x))

1.2 Features of Ladder Programming for MP2000-series Machine Controllers1.2.2 Program Modules1-41.2.2 Program ModulesThe main program can be separa

Page 102 - Instructions

5.7 Data Shift Instructions5.7.5 Exchange (XCHG)5-121Instructions5( 3 ) Programming ExampleIn the following programming example, four words of data

Page 103 - 5.3.7 Divide (DIV (÷))

5.7 Data Shift Instructions5.7.6 Table Initialization (SETW)5-1225.7.6 Table Initialization (SETW)( 1 ) OperationThe SETW instruction stores the da

Page 104

5.7 Data Shift Instructions5.7.6 Table Initialization (SETW)5-123Instructions5( 3 ) Programming ExampleIn the following programming example, the are

Page 105 - ( 2 ) Format

5.7 Data Shift Instructions5.7.7 Byte-to-word Expansion (BEXTD)5-1245.7.7 Byte-to-word Expansion (BEXTD)( 1 ) OperationThe BEXTD instruction expand

Page 106

5.7 Data Shift Instructions5.7.7 Byte-to-word Expansion (BEXTD)5-125Instructions5( 3 ) Programming ExampleIn the following programming example, four

Page 107 -  Condition n

5.7 Data Shift Instructions5.7.8 Word-to-byte Compression (BPRESS)5-1265.7.8 Word-to-byte Compression (BPRESS)( 1 ) OperationThe BPRESS instruction

Page 108

5.7 Data Shift Instructions5.7.8 Word-to-byte Compression (BPRESS)5-127Instructions5( 3 ) Programming ExampleIn the following programming example, t

Page 109 - Key entry: INC

5.7 Data Shift Instructions5.7.9 Binary Search (BSRCH)5-1285.7.9 Binary Search (BSRCH)( 1 ) OperationThe BSRCH instruction searches for the search

Page 110

5.7 Data Shift Instructions5.7.9 Binary Search (BSRCH)5-129Instructions5( 3 ) Programming ExampleIn the following programming example, the data from

Page 111 -  Output Data Behavior

5.7 Data Shift Instructions5.7.10 Sort (SORT)5-1305.7.10 Sort (SORT)( 1 ) OperationThe SORT instruction sorts the data in the range of registers fr

Page 112

Copyright © 1998 YASKAWA ELECTRIC CORPORATIONAll rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or tra

Page 113 - 5.3.12 Add Time (TMADD)

1.2 Features of Ladder Programming for MP2000-series Machine Controllers1.2.4 Communications Control with External Devices1-5Introduction to Ladder

Page 114 - ( 3 ) Programming Example

5.7 Data Shift Instructions5.7.10 Sort (SORT)5-131Instructions5( 3 ) Programming ExampleIn the following programming example, the data from ML00000

Page 115 - 5.3.13 Subtract Time (TMSUB)

5.7 Data Shift Instructions5.7.11 Bit Shift Left (SHFTL)5-1325.7.11 Bit Shift Left (SHFTL)( 1 ) OperationThe SHFTL instruction shifts the bits spec

Page 116

5.7 Data Shift Instructions5.7.11 Bit Shift Left (SHFTL)5-133Instructions5( 3 ) Programming ExampleIn the following programming example, four bits f

Page 117 - 5.3.14 Spend Time (SPEND)

5.7 Data Shift Instructions5.7.12 Bit Shift Right (SHFTR)5-1345.7.12 Bit Shift Right (SHFTR)( 1 ) OperationThe SHFTR instruction shifts the bits sp

Page 118

5.7 Data Shift Instructions5.7.12 Bit Shift Right (SHFTR)5-135Instructions5( 3 ) Programming ExampleIn the following programming example, four bits

Page 119

5.7 Data Shift Instructions5.7.13 Copy Word (COPYW)5-1365.7.13 Copy Word (COPYW)( 1 ) OperationThe COPY instruction copies the specified number of

Page 120 - 5.3.15 Invert Sign (INV)

5.7 Data Shift Instructions5.7.13 Copy Word (COPYW)5-137Instructions5( 2 ) Format∗ C and # registers cannot be used.( 3 ) Programming ExampleIn the

Page 121

5.7 Data Shift Instructions5.7.14 Byte Swap (BSWAP)5-1385.7.14 Byte Swap (BSWAP)( 1 ) OperationThe BSWAP instruction swaps the upper byte and lower

Page 122 - 5.3.17 Absolute Value (ABS)

5.8 DDC Instructions5.8.1 Dead Zone A (DZA)5-139Instructions55.8 DDC Instructions5.8.1 Dead Zone A (DZA)( 1 ) OperationThe DZA instruction calcula

Page 123

5.8 DDC Instructions5.8.1 Dead Zone A (DZA)5-140( 3 ) Programming ExamplesIn the following programming examples, the dead zone set value is set to 1

Page 124 - 5.3.19 BCD Conversion (BCD)

2-1Specifications for Ladder Programs22Specifications for Ladder ProgramsThis chapter gives the specifications for ladder programs.2.1 MP2000-series M

Page 125

5.8 DDC Instructions5.8.2 Dead Zone B (DZB)5-141Instructions55.8.2 Dead Zone B (DZB)( 1 ) OperationThe DZB instruction calculates the output value

Page 126

5.8 DDC Instructions5.8.2 Dead Zone B (DZB)5-142( 3 ) Programming ExamplesIn the following programming examples, the dead zone set value is set to 1

Page 127

5.8 DDC Instructions5.8.3 Upper/Lower Limit (LIMIT)5-143Instructions55.8.3 Upper/Lower Limit (LIMIT)( 1 ) OperationThe LIMIT instruction controls t

Page 128

5.8 DDC Instructions5.8.3 Upper/Lower Limit (LIMIT)5-144( 3 ) Programming ExamplesIn the following programming examples, the operation results are s

Page 129

5.8 DDC Instructions5.8.4 PI Control (PI)5-145Instructions55.8.4 PI Control (PI)( 1 ) OperationWhen deviation X is input, the PI instruction perfor

Page 130

5.8 DDC Instructions5.8.4 PI Control (PI)5-146( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration for PI Instruction

Page 131

5.8 DDC Instructions5.8.4 PI Control (PI)5-147Instructions5[ b ] Parameter Table Configuration for PI Instruction with Real Numbers∗ The relay input

Page 132 - 5.4.1 Inclusive AND (AND)

5.8 DDC Instructions5.8.4 PI Control (PI)5-148( 3 ) Programming ExampleThis programming example calculates the reference value in MF00100 weighted w

Page 133

5.8 DDC Instructions5.8.4 PI Control (PI)5-149Instructions5The programming example is shown below. The OL00000 (reference value) and IL00002 (feedb

Page 134 - 5.4.2 Inclusive OR (OR)

5.8 DDC Instructions5.8.5 PD Control (PD)5-1505.8.5 PD Control (PD)( 1 ) OperationWhen deviation X is input, the PD instruction performs P and D op

Page 135

2.1 MP2000-series Machine Controller Specifications2.1.1 Applicable Machine Controllers2-22.1 MP2000-series Machine Controller Specifications2.1.1

Page 136 - 5.4.3 Exclusive OR (XOR)

5.8 DDC Instructions5.8.5 PD Control (PD)5-151Instructions5( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration for PD

Page 137

5.8 DDC Instructions5.8.5 PD Control (PD)5-152[ b ] Parameter Table Configuration for PD Instruction with Real Numbers∗ The relay input and output b

Page 138 - 5.4.4 Less Than (<)

5.8 DDC Instructions5.8.5 PD Control (PD)5-153Instructions5( 3 ) Programming ExampleThis programming example calculates the reference value in MF001

Page 139 - Key entry: <=

5.8 DDC Instructions5.8.5 PD Control (PD)5-154The programming example is shown below. The OL00000 (reference value) and IL00002 (feedback value) re

Page 140 - 5.4.6 Equal (=)

5.8 DDC Instructions5.8.5 PD Control (PD)5-155Instructions5( 4 ) Additional Information[ a ] Transfer FunctionsThe transfer function of the P and D

Page 141 - 5.4.7 Not Equal (≠)

5.8 DDC Instructions5.8.6 PID Control (PID)5-1565.8.6 PID Control (PID)( 1 ) OperationWhen deviation X is input, the PID instruction performs P, I,

Page 142

5.8 DDC Instructions5.8.6 PID Control (PID)5-157Instructions5( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration for

Page 143 - Key entry: >

5.8 DDC Instructions5.8.6 PID Control (PID)5-158[ b ] Parameter Table Configuration for PID Instruction with Real Numbers∗ The relay input and outpu

Page 144 - 5.4.10 Range Check (RCHK)

5.8 DDC Instructions5.8.6 PID Control (PID)5-159Instructions5( 3 ) Programming ExampleThis programming example calculates the reference value in MF0

Page 145

5.8 DDC Instructions5.8.6 PID Control (PID)5-160The programming example is shown below. The OL00000 (reference value) and IL00002 (feedback value)

Page 146

2.1 MP2000-series Machine Controller Specifications2.1.2 Machine Controller Program Specifications2-3Specifications for Ladder Programs22.1.2 Machi

Page 147 -  Work Register Configuration

5.8 DDC Instructions5.8.7 First-order Lag (LAG)5-161Instructions55.8.7 First-order Lag (LAG)( 1 ) OperationThe LAG instruction calculates the first

Page 148

5.8 DDC Instructions5.8.7 First-order Lag (LAG)5-162( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration for LAG Instr

Page 149

5.8 DDC Instructions5.8.7 First-order Lag (LAG)5-163Instructions5( 3 ) Programming ExampleIn the following programming example, the LAG instruction

Page 150

5.8 DDC Instructions5.8.8 Phase Lead Lag (LLAG)5-1645.8.8 Phase Lead Lag (LLAG)( 1 ) OperationThe LLAG instruction calculates the phase lead and la

Page 151 - Parameter Table Configuration

5.8 DDC Instructions5.8.8 Phase Lead Lag (LLAG)5-165Instructions5( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration

Page 152

5.8 DDC Instructions5.8.8 Phase Lead Lag (LLAG)5-166( 3 ) Programming ExampleIn the following programming example, the LLAG instruction is executed

Page 153 - First address of

5.8 DDC Instructions5.8.9 Function Generator (FGN)5-167Instructions55.8.9 Function Generator (FGN)( 1 ) OperationThe FGN instruction generates a fu

Page 154

5.8 DDC Instructions5.8.9 Function Generator (FGN)5-168( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configuration for FGN In

Page 155

5.8 DDC Instructions5.8.9 Function Generator (FGN)5-169Instructions5[ b ] Parameter Table Configuration for FGN Instruction with Double-length Integ

Page 156

5.8 DDC Instructions5.8.9 Function Generator (FGN)5-170( 3 ) Programming ExampleIn the following programming example, the function is generated usin

Page 157

2.2 Engineering Tool Specifications2.2.1 Applicable Engineering Tool2-42.2 Engineering Tool SpecificationsThis section gives the specifications for

Page 158

5.8 DDC Instructions5.8.9 Function Generator (FGN)5-171Instructions5( 4 ) Additional InformationThe FGN instruction searches for the pair Xn and Yn

Page 159 - ( 4 ) Additional Information

5.8 DDC Instructions5.8.10 Inverse Function Generator (IFGN)5-1725.8.10 Inverse Function Generator (IFGN)( 1 ) OperationThe IFGN instruction genera

Page 160 - Variable > Maximum value?

5.8 DDC Instructions5.8.10 Inverse Function Generator (IFGN)5-173Instructions5( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table C

Page 161

5.8 DDC Instructions5.8.10 Inverse Function Generator (IFGN)5-174[ b ] Parameter Table Configuration for IFGN Instruction with Double-length Integer

Page 162

5.8 DDC Instructions5.8.10 Inverse Function Generator (IFGN)5-175Instructions5( 3 ) Programming ExampleIn the following programming example, the fun

Page 163

5.8 DDC Instructions5.8.10 Inverse Function Generator (IFGN)5-176( 4 ) Additional InformationThe IFGN instruction searches for the pair Xn and Yn wh

Page 164

5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-177Instructions55.8.11 Linear Accelerator/Decelerator 1 (LAU)( 1 ) OperationThe

Page 165

5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-178( 2 ) Format∗ C and # registers cannot be used.[ a ] Parameter Table Configura

Page 166

5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-179Instructions5[ b ] Parameter Table Configuration for LAU Instruction with Real

Page 167

5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-180( 3 ) Programming ExampleIn the following programming example, the LAU instruc

Page 168 - 5.6.1 Square Root (SQRT)

2.3 Ladder Programming Instructions2-5Specifications for Ladder Programs22.3 Ladder Programming InstructionsThe following table lists the ladder pro

Page 169

5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-181Instructions5( 4 ) Additional InformationThis information applies when the LAU

Page 170 - 5.6.2 Sine (SIN)

5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-182[ b ] LAU Instruction for Real NumbersThe LAU instruction for real numbers cal

Page 171

5.8 DDC Instructions5.8.11 Linear Accelerator/Decelerator 1 (LAU)5-183Instructions5[ c ] Precaution When Input Speed Changes Across a Speed of 0If a

Page 172 - Output data

5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-1845.8.12 Linear Accelerator/Decelerator 2 (SLAU)( 1 ) OperationThe SLAU instru

Page 173

5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-185Instructions5( 2 ) Format∗ 1. This data type can be used only for version 2.3

Page 174

5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-186 If QS (quick stop) is opened, QT (quick stop time) is used as the accelerat

Page 175 -  Input Data Range

5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-187Instructions5[ c ] Parameter Table Configuration for SLAU Instruction with Re

Page 176 - 5.6.6 Arc Cosine (ACOS)

5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-188When QS (quick stop) opens (OFF), the output decelerates at the quick stop ti

Page 177 - 5.6.7 Arc Tangent (ATAN)

5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-189Instructions5The following figure shows how each register operates.∗ If the q

Page 178

5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-190 Speed Output Value during a Quick StopThe speed output value during a quick

Page 179 - Input data Output data

2.3 Ladder Programming Instructions2-6Program Control InstructionsSEE Call Sequence Subprogram5.5.1MSEE Call Motion Program5.5.2FUNC Call User Functi

Page 180

5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-191Instructions5ARY (accelerating) turns ON at the following times:•When V’ ≥ 0

Page 181 - 5.7 Data Shift Instructions

5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-192 Speed Output Value during S-Curve AccelerationThe speed output value during

Page 182

5.8 DDC Instructions5.8.12 Linear Accelerator/Decelerator 2 (SLAU)5-193Instructions5[ c ] Precautions in Using the SLAU Instruction for IntegersDo n

Page 183

5.8 DDC Instructions5.8.13 Pulse Width Modulation (PWM)5-1945.8.13 Pulse Width Modulation (PWM)( 1 ) OperationThe PWM instruction converts the inpu

Page 184

5.8 DDC Instructions5.8.13 Pulse Width Modulation (PWM)5-195Instructions5( 2 ) Format∗ C and # registers cannot be used.[ a ] Ranges of Input and Ou

Page 185 - 5.7.3 Move Bit (MOVB)

5.8 DDC Instructions5.8.13 Pulse Width Modulation (PWM)5-196( 3 ) Programming ExampleIn the following programming example, the PWM output for the in

Page 186

5.9 Table Manipulation Instructions5.9.1 Read Table Block (TBLBR)5-197Instructions55.9 Table Manipulation Instructions5.9.1 Read Table Block (TBLB

Page 187 - 5.7.4 Move Word (MOVW)

5.9 Table Manipulation Instructions5.9.1 Read Table Block (TBLBR)5-198( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.[ a ] Paramet

Page 188

5.9 Table Manipulation Instructions5.9.1 Read Table Block (TBLBR)5-199Instructions5( 3 ) Programming ExampleIn the following programming example, th

Page 189 - 5.7.5 Exchange (XCHG)

5.9 Table Manipulation Instructions5.9.2 Write Table Block (TBLBW)5-2005.9.2 Write Table Block (TBLBW)( 1 ) OperationThe TBLBW instruction moves th

Page 190

2.3 Ladder Programming Instructions2-7Specifications for Ladder Programs2Table Manipulation InstructionsTBLBR Read Table Block5.9.1TBLBW Write Table

Page 191

5.9 Table Manipulation Instructions5.9.2 Write Table Block (TBLBW)5-201Instructions5( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used

Page 192

5.9 Table Manipulation Instructions5.9.2 Write Table Block (TBLBW)5-202( 3 ) Programming ExampleIn the following programming example, an area of dat

Page 193

5.9 Table Manipulation Instructions5.9.3 Search for Table Row (TBLSRL)5-203Instructions55.9.3 Search for Table Row (TBLSRL)( 1 ) OperationThe TBLSR

Page 194

5.9 Table Manipulation Instructions5.9.3 Search for Table Row (TBLSRL)5-204( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.[ a ] Pa

Page 195

5.9 Table Manipulation Instructions5.9.3 Search for Table Row (TBLSRL)5-205Instructions5( 3 ) Programming ExampleIn the following programming exampl

Page 196

5.9 Table Manipulation Instructions5.9.4 Search for Table Column (TBLSRC)5-2065.9.4 Search for Table Column (TBLSRC)( 1 ) OperationThe TBLSRC instr

Page 197 - 5.7.9 Binary Search (BSRCH)

5.9 Table Manipulation Instructions5.9.4 Search for Table Column (TBLSRC)5-207Instructions5( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot

Page 198

5.9 Table Manipulation Instructions5.9.4 Search for Table Column (TBLSRC)5-208( 3 ) Programming ExampleIn the following programming example, a searc

Page 199 - 5.7.10 Sort (SORT)

5.9 Table Manipulation Instructions5.9.5 Clear Table Block (TBLCL)5-209Instructions55.9.5 Clear Table Block (TBLCL)( 1 ) OperationThe TBLCL instruc

Page 200

5.9 Table Manipulation Instructions5.9.5 Clear Table Block (TBLCL)5-210( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.[ a ] Parame

Page 201

3-1Ladder Program Development Flow33Ladder Program Development FlowThis chapter describes the development flow for ladder programs.3.1 Ladder Program

Page 202

5.9 Table Manipulation Instructions5.9.5 Clear Table Block (TBLCL)5-211Instructions5( 3 ) Programming ExampleIn the following programming example, t

Page 203

5.9 Table Manipulation Instructions5.9.6 Move Table Block (TBLMV)5-2125.9.6 Move Table Block (TBLMV)( 1 ) OperationThe TBLMV instruction moves a bl

Page 204

5.9 Table Manipulation Instructions5.9.6 Move Table Block (TBLMV)5-213Instructions5( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.

Page 205 - 5.7.13 Copy Word (COPYW)

5.9 Table Manipulation Instructions5.9.6 Move Table Block (TBLMV)5-214( 3 ) Programming ExampleIn the following programming example, the specified b

Page 206

5.9 Table Manipulation Instructions5.9.7 Read Queue Table (QTBLR and QTBLRI)5-215Instructions55.9.7 Read Queue Table (QTBLR and QTBLRI)( 1 ) Operat

Page 207 - 5.7.14 Byte Swap (BSWAP)

5.9 Table Manipulation Instructions5.9.7 Read Queue Table (QTBLR and QTBLRI)5-216( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.Pa

Page 208 - 5.8 DDC Instructions

5.9 Table Manipulation Instructions5.9.7 Read Queue Table (QTBLR and QTBLRI)5-217Instructions5[ a ] Parameter Table Configuration[ b ] Error Codes[

Page 209

5.9 Table Manipulation Instructions5.9.7 Read Queue Table (QTBLR and QTBLRI)5-218The parameter table is set as shown in the following table.Here, sw

Page 210 - Key entry: DZB

5.9 Table Manipulation Instructions5.9.8 Write Queue Table (QTBLW and QTBLWI)5-219Instructions55.9.8 Write Queue Table (QTBLW and QTBLWI)( 1 ) Oper

Page 211

5.9 Table Manipulation Instructions5.9.8 Write Queue Table (QTBLW and QTBLWI)5-220( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.P

Page 212

3.1 Ladder Program Design Procedures 3-23.1 Ladder Program Design ProceduresThis section describes the design procedures for ladder programs as out

Page 213

5.9 Table Manipulation Instructions5.9.8 Write Queue Table (QTBLW and QTBLWI)5-221Instructions5[ a ] Parameter Table Configuration[ b ] Error Codes[

Page 214 - 5.8.4 PI Control (PI)

5.9 Table Manipulation Instructions5.9.8 Write Queue Table (QTBLW and QTBLWI)5-222The parameter table is set as shown in the following table.After c

Page 215

5.9 Table Manipulation Instructions5.9.9 Clear Queue Table Pointers (QTBLCL)5-223Instructions55.9.9 Clear Queue Table Pointers (QTBLCL)( 1 ) Operat

Page 216

5.9 Table Manipulation Instructions5.9.9 Clear Queue Table Pointers (QTBLCL)5-224( 2 ) Format∗ 1. Optional.∗ 2. C and # registers cannot be used.

Page 217

5.10 System Function Instructions5.10.1 Counter (COUNTER)5-225Instructions55.10 System Function Instructions5.10.1 Counter (COUNTER)( 1 ) Operatio

Page 218

5.10 System Function Instructions5.10.1 Counter (COUNTER)5-226( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers cannot be used.The param

Page 219 - 5.8.5 PD Control (PD)

5.10 System Function Instructions5.10.1 Counter (COUNTER)5-227Instructions5( 3 ) Programming ExampleIn the following programming example, the first

Page 220

5.10 System Function Instructions5.10.2 First-in First-out (FINFOUT)5-2285.10.2 First-in First-out (FINFOUT)( 1 ) OperationThe FINFOUT instruction

Page 221

5.10 System Function Instructions5.10.2 First-in First-out (FINFOUT)5-229Instructions5( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers

Page 222

5.10 System Function Instructions5.10.2 First-in First-out (FINFOUT)5-230The parameters are described in the following table.( 3 ) Programming Examp

Page 223

iiiAbout this Manual This manual provides comprehensive information on ladder programming for MP2000-series Machine Controllers. It provides the fo

Page 224

3.1 Ladder Program Design Procedures3.1.1 Connecting the Hardware3-3Ladder Program Development Flow33.1.1 Connecting the HardwareThe flow of ladder

Page 225 - 5.8.6 PID Control (PID)

5.10 System Function Instructions5.10.2 First-in First-out (FINFOUT)5-231Instructions5The data from MW00000 to MW00003 is stored in the FIFO table b

Page 226

5.10 System Function Instructions5.10.3 Trace (TRACE)5-2325.10.3 Trace (TRACE)( 1 ) OperationThe TRACE instruction performs trace execution control

Page 227

5.10 System Function Instructions5.10.3 Trace (TRACE)5-233Instructions5The parameters are described in the following table.The status configuration

Page 228

5.10 System Function Instructions5.10.4 Read Data Trace (DTRC-RD)5-2345.10.4 Read Data Trace (DTRC-RD)( 1 ) OperationThe DTRC-RD instruction reads

Page 229

5.10 System Function Instructions5.10.4 Read Data Trace (DTRC-RD)5-235Instructions5( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers can

Page 230 - 5.8.7 First-order Lag (LAG)

5.10 System Function Instructions5.10.4 Read Data Trace (DTRC-RD)5-236The status configuration is shown below.( 3 ) Programming ExampleIn the follow

Page 231

5.10 System Function Instructions5.10.4 Read Data Trace (DTRC-RD)5-237Instructions5( 4 ) Additional Information[ a ] Structure of Read DataThe read

Page 232

5.10 System Function Instructions5.10.5 Read Inverter Trace (ITRC-RD)5-2385.10.5 Read Inverter Trace (ITRC-RD)( 1 ) OperationThe ITRC-RD instructio

Page 233 - 5.8.8 Phase Lead Lag (LLAG)

5.10 System Function Instructions5.10.5 Read Inverter Trace (ITRC-RD)5-239Instructions5( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers

Page 234

5.10 System Function Instructions5.10.5 Read Inverter Trace (ITRC-RD)5-240The parameters are described in the following table.The status configurati

Page 235

3.1 Ladder Program Design Procedures3.1.2 Installing MPE720 Version 63-43.1.2 Installing MPE720 Version 6Install MPE720 version 6 on a PC.Refer to

Page 236

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-241Instructions55.10.6 Send Message (MSG-SND)( 1 ) OperationThe MSG-SND instruction

Page 237

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-242( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers cannot be used.The

Page 238

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-243Instructions5[ a ] Parameter DetailsThis section describes the parameters in deta

Page 239

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-244  Status (PARAM01)The status of the communications section is output to this par

Page 240

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-245Instructions53. PARAMETER If the RESULT is 4 (FMT_NG), one of the following error

Page 241

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-246 Data AddressesThe range of addresses that can be set for each function code are

Page 242

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-247Instructions5 Remote CPU Number (PARAM07)Specify the remote CPU number. If the r

Page 243

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-248[ c ] Inputs Execute (Send Execution Command)The message is sent when this comma

Page 244

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-249Instructions5( 3 ) Programming ExampleIn the following programming example, sendi

Page 245

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-250

Page 246

3.1 Ladder Program Design Procedures3.1.5 Creating a Project3-5Ladder Program Development Flow33.1.5 Creating a ProjectUse the following procedure

Page 247

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-251Instructions5

Page 248

5.10 System Function Instructions5.10.6 Send Message (MSG-SND)5-252Refer to Chapter 6 Built-in Ethernet Communications in the Machine Controller MP2

Page 249

5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-253Instructions55.10.7 Receive Message (MSG-RCV)( 1 ) OperationA message is rece

Page 250 - (V – V' ) × 5,000

5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-254( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers cannot be used.T

Page 251 - DVDT = V - V’

5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-255Instructions5[ a ] Parameter DetailsThis section describes the parameters in d

Page 252

5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-256 Remote Station Number (PARAM02)The station number of the source is output to

Page 253

5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-257Instructions5 Coil Offset (PARAM08)Set the offset to the word address of the

Page 254

5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-258[ b ] Inputs Execute (Receive Execution Command)The message is received when

Page 255

5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-259Instructions5( 3 ) Programming ExampleIn the following programming example, me

Page 256

5.10 System Function Instructions5.10.7 Receive Message (MSG-RCV)5-260Refer to Chapter 6 Built-in Ethernet Communications in the Machine Controller

Page 257

3.1 Ladder Program Design Procedures3.1.6 Creating Ladder Programs3-63.1.6 Creating Ladder ProgramsStart the Ladder Editor and use the following pr

Page 258

5.10 System Function Instructions5.10.8 Write Inverter Parameter (ICNS-WR)5-261Instructions55.10.8 Write Inverter Parameter (ICNS-WR)( 1 ) Operatio

Page 259

5.10 System Function Instructions5.10.8 Write Inverter Parameter (ICNS-WR)5-262( 2 ) Format∗ 1. M or D register only.∗ 2. C and # registers cannot

Page 260

5.10 System Function Instructions5.10.8 Write Inverter Parameter (ICNS-WR)5-263Instructions5The parameters are described in the following table.The

Page 261

5.10 System Function Instructions5.10.8 Write Inverter Parameter (ICNS-WR)5-264( 3 ) Programming ExampleIn the following programming example, the da

Page 262

5.10 System Function Instructions5.10.8 Write Inverter Parameter (ICNS-WR)5-265Instructions5( 4 ) Additional Information[ a ] Writing Parameters to

Page 263

5.10 System Function Instructions5.10.9 Read Inverter Parameter (ICNS-RD)5-2665.10.9 Read Inverter Parameter (ICNS-RD)( 1 ) OperationThe ICNS-RD in

Page 264

5.10 System Function Instructions5.10.9 Read Inverter Parameter (ICNS-RD)5-267Instructions5( 2 ) Format∗ 1. M or D register only.∗ 2. C and # regis

Page 265

5.10 System Function Instructions5.10.9 Read Inverter Parameter (ICNS-RD)5-268The parameters are described in the following table.The status configu

Page 266

5.10 System Function Instructions5.10.9 Read Inverter Parameter (ICNS-RD)5-269Instructions5( 3 ) Programming ExampleIn the following programming exa

Page 267

5.10 System Function Instructions5.10.10 Write SERVOPACK Parameter (MLNK-SVW)5-2705.10.10 Write SERVOPACK Parameter (MLNK-SVW)( 1 ) OperationThe ML

Page 268

3.1 Ladder Program Design Procedures3.1.6 Creating Ladder Programs3-7Ladder Program Development Flow33. Create the ladder program in the Ladder Edit

Page 269

5.10 System Function Instructions5.10.10 Write SERVOPACK Parameter (MLNK-SVW)5-271Instructions5The parameters are described in the following table.T

Page 270

5.10 System Function Instructions5.10.10 Write SERVOPACK Parameter (MLNK-SVW)5-272 Processing Result (PARAM00)• 0000 hex: Processing (Busy)• 1000

Page 271

5.10 System Function Instructions5.10.10 Write SERVOPACK Parameter (MLNK-SVW)5-273Instructions5 For System Use #2 (PARAM05)This parameter is used b

Page 272

5.10 System Function Instructions5.10.10 Write SERVOPACK Parameter (MLNK-SVW)5-274

Page 273

5.10 System Function Instructions5.10.11 Write Motion Register (MOTREG-W)5-275Instructions55.10.11 Write Motion Register (MOTREG-W)( 1 ) OperationT

Page 274

5.10 System Function Instructions5.10.11 Write Motion Register (MOTREG-W)5-276( 2 ) Format∗ C and # registers cannot be used. These parameters may b

Page 275

5.10 System Function Instructions5.10.11 Write Motion Register (MOTREG-W)5-277Instructions5( 3 ) Programming ExampleIn the following programming exa

Page 276

5.10 System Function Instructions5.10.12 Read Motion Register (MOTREG-R)5-2785.10.12 Read Motion Register (MOTREG-R)( 1 ) OperationThe MOTREG-R ins

Page 277

5.10 System Function Instructions5.10.12 Read Motion Register (MOTREG-R)5-279Instructions5( 2 ) Format∗ C and # registers cannot be used. These para

Page 278

5.10 System Function Instructions5.10.12 Read Motion Register (MOTREG-R)5-280( 3 ) Programming ExampleIn the following programming example, the Mach

Page 279

3.1 Ladder Program Design Procedures3.1.6 Creating Ladder Programs3-8f Repeat steps 1 to 3 until you have created the entire ladder program. The fol

Page 280

5.11 C-language Control Instructions5.11.1 Call C-language Function (C-FUNC)5-281Instructions55.11 C-language Control Instructions5.11.1 Call C-la

Page 281

5.11 C-language Control Instructions5.11.1 Call C-language Function (C-FUNC)5-282The parameters are described in the following table.∗ This error is

Page 282

5.11 C-language Control Instructions5.11.2 C-language Task Control (TSK-CTRL)5-283Instructions55.11.2 C-language Task Control (TSK-CTRL)( 1 ) Opera

Page 283

5.11 C-language Control Instructions5.11.2 C-language Task Control (TSK-CTRL)5-284The parameters are described in the following table.∗ 1. Execute

Page 284

5.11 C-language Control Instructions5.11.2 C-language Task Control (TSK-CTRL)5-285Instructions5( 3 ) Programming ExampleIn the following programming

Page 285

6-1Features of the MPE720 Engineering Tool66Features of the MPE720 Engineering ToolThis chapter describes the key features of the MPE720 Engineering T

Page 286

6.1 Ladder Program Runtime Monitoring 6-2This chapter describes the following ladder programming and debugging features of MPE720 version 6.• Ladde

Page 287

6.2 Searching/Replacing6-3Features of the MPE720 Engineering Tool66.2 Searching/ReplacingTwo different search/replace operations are provided.• Sea

Page 288

6.3 Cross References 6-46.3 Cross ReferencesCross referencing allows you to check whether a register is used in a program, and where it is used.The

Page 289

6.4 Checking for Multiple Coils6-5Features of the MPE720 Engineering Tool66.4 Checking for Multiple CoilsYou can check for multiple coils (different

Page 290

3.1 Ladder Program Design Procedures3.1.7 Transferring Ladder Programs3-9Ladder Program Development Flow33.1.7 Transferring Ladder ProgramsUse the

Page 291 - (DB000001) three times

6.6 Viewing Called Programs 6-66.6 Viewing Called ProgramsYou can open a drawing that is called with an SEE instruction or an FUNC instruction.6.7

Page 292

6.8 Tuning Panel6-7Features of the MPE720 Engineering Tool66.8 Tuning PanelThe Tuning Panel allows you to display and edit the current values of pre

Page 293 -  Error Codes

6.9 Enabling and Disabling Ladder Programs 6-86.9 Enabling and Disabling Ladder ProgramsYou can enable and disable individual drawings in ladder pr

Page 294 - 5.10.1 Counter (COUNTER)

6.10 Compiling for MPE720 Version 56-9Features of the MPE720 Engineering Tool66.10 Compiling for MPE720 Version 5Compiling for MPE720 version 5 allo

Page 295

7-1Troubleshooting77TroubleshootingThis chapter describes troubleshooting.7.1 Basic Flow of Troubleshooting - - - - - - - - - - - - - - - - - - - - -

Page 296

7.1 Basic Flow of Troubleshooting 7-27.1 Basic Flow of TroubleshootingWhen a problem occurs, it is important to quickly find the cause of the probl

Page 297

7.2 Indicator Status7-3Troubleshooting77.2 Indicator StatusThe pattern of the indicators on the MP2000-series Machine Controller shows the operatin

Page 298

7.3 Problem Classifications7.3.1 Overview7-47.3 Problem Classifications7.3.1 OverviewThe following table gives the problems that can occur on an M

Page 299

7.3 Problem Classifications7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers7-5Troubleshooting77.3.2 Error Checking Flowchart fo

Page 300

7.4 Detailed Troubleshooting7.4.1 Operation Errors7-67.4 Detailed Troubleshooting7.4.1 Operation ErrorsOperation errors can be caused by the follo

Page 301 - Key entry: TRACE

3.1 Ladder Program Design Procedures3.1.7 Transferring Ladder Programs3-104. Click the Individual Button, then select the Program Check Box. Click t

Page 302

7.4 Detailed Troubleshooting7.4.1 Operation Errors7-7Troubleshooting7 Troubleshooting Method 1You can use the following procedure to troubleshoot o

Page 303 -  Structure of Read Data

7.4 Detailed Troubleshooting7.4.1 Operation Errors7-8 Troubleshooting Method 2You can use the following procedure to troubleshoot operation errors

Page 304

7.4 Detailed Troubleshooting7.4.2 I/O Errors7-9Troubleshooting77.4.2 I/O ErrorsAn I/O error can occur in the following cases.• Option Module alloc

Page 305

7.4 Detailed Troubleshooting7.4.3 Watchdog Timer Errors7-107.4.3 Watchdog Timer ErrorsWatchdog timer errors can be caused by the following problems

Page 306

7.4 Detailed Troubleshooting7.4.5 System Errors7-11Troubleshooting77.4.5 System ErrorsSystem errors can be caused by the following problems.• Ille

Page 307

A-1System RegistersAppAAppendix ASystem RegistersThis appendix describes the registers that are provided by the system of the Machine Controller.A.1 S

Page 308

A.1 System Service Registers A-2System registers are provided by the MP2000-series Machine Controller system. They can be used to read system error

Page 309

A.1 System Service RegistersA-3System RegistersAppA( 2 ) Exclusive to DWG.H OnlyOperation starts when the high-speed scan starts.NameRegister Address

Page 310

A.1 System Service Registers A-4( 3 ) Exclusive to DWG.L OnlyOperation starts when the low-speed scan starts.NameRegister AddressRemarks1-scan Flick

Page 311

A.1 System Service RegistersA-5System RegistersAppA( 4 ) Scan Execution Status and Calendar( 5 ) System Program Software Numbers and Remaining Progra

Page 312 -  Processing Result (PARAM00)

3.1 Ladder Program Design Procedures3.1.8 Checking the Operation of the Ladder Programs3-11Ladder Program Development Flow33.1.8 Checking the Opera

Page 313 -   Status (PARAM01)

A.2 System Status A-6A.2 System StatusThe system operating status and errors are stored in registers SW00040 to SW00048. You can check the system st

Page 314 -  Function Code (PARAM04)

A.3 System Error StatusA-7System RegistersAppAA.3 System Error StatusDetails on the system errors are stored in registers SW00050 to SW00079.Name Reg

Page 315 -  Data Addresses

A.3 System Error Status A-8∗ 1. This error is reported for CPU Modules with a system software version of 2.75 or higher. For version 2.74 or lower,

Page 316

A.4 Overview of User Operation Error StatusA-9System RegistersAppAA.4 Overview of User Operation Error StatusDetails are given in registers SW00080 t

Page 317

A.4 Overview of User Operation Error Status A-10( 2 ) User Operation Error Code -2Error Code Error Description System DefaultInteger and Real Number

Page 318

A.5 System Service Execution StatusA-11System RegistersAppAA.5 System Service Execution StatusThe execution status of system services is stored in re

Page 319

A.7 System I/O Error Status A-12A.7 System I/O Error StatusDetails on the system I/O errors are stored in registers SW00200 to SW00503.NameRegister

Page 320

A.8 CF Card-related System Registers (MP2200-series CPU-02 and CPU-03 only)A-13System RegistersAppAA.8 CF Card-related System Registers (MP2200-serie

Page 321

A.9 Interrupt StatusA.9.1 Interrupt Status ListA-14A.9 Interrupt StatusA.9.1 Interrupt Status ListA.9.2 Details on Interrupting Module( 1 ) Rackmm =

Page 322

A.10 Module InformationA-15System RegistersAppAA.10 Module InformationThe Module information is reported as shown in this section. The contents of t

Page 323 - Key entry: MSG-RCV

3.1 Ladder Program Design Procedures3.1.8 Checking the Operation of the Ladder Programs3-12( 2 ) Confirming the Operation of the 0000th Line (AND C

Page 324 -  Status (PARAM01)

A.11 MPU-01 System StatusA-16A.11 MPU-01 System StatusNameRegister AddressRemarksMPU-01 #1 Status SW01411Status of MPU-01 Module circuit number 1MPU-

Page 325 -  Remote CPU Number (PARAM07)

A.12 Motion Program InformationA-17System RegistersAppAA.12 Motion Program Information( 1 ) System Work Numbers 1 to 8System Work NumberSystem Work 1

Page 326

A.12 Motion Program InformationA-18( 2 ) System Work Numbers 9 to 16System Work NumberSystem Work 9System Work 10System Work 11System Work 12System W

Page 327

B-1CP (Previous) Ladder Instructions and New Ladder InstructionsAppBAppendix BCP (Previous) Ladder Instructions andNew Ladder InstructionsThis appendi

Page 328

B.1 Correspondence between CP (Previous) Ladder Instructions and New Ladder Instructions B-2B.1 Correspondence between CP (Previous) Ladder Instruct

Page 329

B.2 Converting CP (Previous) Ladder Programs to New Ladder ProgramsB-3CP (Previous) Ladder Instructions and New Ladder InstructionsAppBB.2 Converting

Page 330

B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs B-42. Click Select.The Conversion of CP ladder Dialog Box will appear.The check

Page 331

C-1Sample ProgrammingAppCAppendix CSample ProgrammingThis appendix describes ladder programming examples that perform test runs.C.1 Jogging from the

Page 332

C.1 Jogging from the Control Panel C-2C.1 Jogging from the Control PanelThe following configuration and ladder programming example illustrate how to

Page 333

C.2 Motion Program ControlC-3Sample ProgrammingAppCC.2 Motion Program ControlThe following ladder programming example demonstrates how to control exe

Page 334

iv Related ManualsThe following manuals are related to the MP2000 Series. Refer to these manuals as required.Manual Name Manual Number Descriptio

Page 335

3.1 Ladder Program Design Procedures3.1.8 Checking the Operation of the Ladder Programs3-13Ladder Program Development Flow3( 3 ) Confirming the Oper

Page 336

C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis C-4C.3 Simple Synchronized Operation of Two Axes with a Virtual AxisWith the follo

Page 337

C.3 Simple Synchronized Operation of Two Axes with a Virtual AxisC-5Sample ProgrammingAppC Ladder Programming Example

Page 338

C.4 Transferring Project Files to Different Models C-6C.4 Transferring Project Files to Different ModelsUse the following procedure to transfer a pr

Page 339

D-1Format for EXPRESSION Instruction AppDAppendix DFormat for EXPRESSION InstructionThis appendix describes the format for the EXPRESSION instruction.

Page 340

D.1 Elements That You Can Use in Numeric Expressions D-2D.1 Elements That You Can Use in Numeric ExpressionsNumeric expressions can include operator

Page 341 -  For System Use #1 (PARAM04)

D.1 Elements That You Can Use in Numeric ExpressionsD-3Format for EXPRESSION Instruction AppD( 2 ) Operands[ a ] ConstantsIntegers or real numbers ma

Page 342 -  For System Use #3 (PARAM06)

D.1 Elements That You Can Use in Numeric Expressions D-4( 3 ) Instructions That You Can Use with EXPRESSION InstructionsInstruction Description Exam

Page 343

D.2 National LimitationsD.2.1 Arithmetic OperatorsD-5Format for EXPRESSION Instruction AppDD.2 National LimitationsSeveral limitations apply when co

Page 344

D.2 National LimitationsD.2.4 Substitution OperatorD-6D.2.4 Substitution OperatorReal number and integer registers can be substituted with either re

Page 345

E-1PrecautionsAppEAppendix EPrecautionsThis appendix provides precautions on ladder programs and motion parameters.E.1 General Precautions - - - -

Page 346

3.1 Ladder Program Design Procedures3.1.9 Saving the Ladder Programs to Flash Memory3-143.1.9 Saving the Ladder Programs to Flash MemoryUse the fol

Page 347

E.1 General Precautions E-2E.1 General Precautions( 1 ) Do Not Forget to Save The Data to Flash Memory When You Change or Transfer a Pro-gramDo not

Page 348

E.2 Precautions on Motion ParametersE-3PrecautionsAppE( 2 ) Do Not Use a Subscript to Reference a Motion Register in a Different CircuitMotion regist

Page 349

IndexIndex-1IndexSymbols # registers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-15 Numerics 10-ms OFF-Delay Timer (T

Page 350

IndexIndex-2Integer Remainder (MOD) - - - - - - - - - - - - - - - - - - - - - - - - - - 5-36 Inverse Function Generator (IFGN) - - - - - - - - - - -

Page 351

Revision HistoryThe revision dates and numbers of the revised manuals are given on the bottom of the back cover.Date of PublicationRev. No.WEB Rev. No

Page 352

IRUMA BUSINESS CENTER (SOLUTION CENTER)480, Kamifujisawa, Iruma, Saitama 358-8555, JapanPhone 81-4-2962-5151 Fax 81-4-2962-6138http://www.yaskawa.

Page 353

4-1Programming44ProgrammingThis chapter describes ladder programming methods and the elements that are necessary for ladder programming.4.1 Ladder Pro

Page 354

4.1 Ladder Program Editor 4-24.1 Ladder Program EditorOn the MPE720 version 6 Engineering Tool, the following panes are displayed to edit a ladder

Page 355

4.2 Ladder Drawings4.2.1 Types of Ladder Drawings4-3Programming44.2 Ladder DrawingsLadder programs are managed as drawings (ladder drawings) that a

Page 356 - Current values of

4.2 Ladder Drawings4.2.1 Types of Ladder Drawings4-4( 2 ) Hierarchical Configuration of DrawingsEach process program is organized in a parent-child-

Page 357 - 6.2 Searching/Replacing

4.2 Ladder Drawings4.2.2 Controlling the Execution of Drawings4-5Programming44.2.2 Controlling the Execution of Drawings( 1 ) Controlling the Execu

Page 358 - 6.3 Cross References

4.2 Ladder Drawings4.2.2 Controlling the Execution of Drawings4-6( 3 ) Execution Processing of DrawingsThe execution processing for drawings is exec

Page 359 - 6.5 Forcing Coils ON and OFF

4.3 User Functions4.3.1 What Is a User Function?4-7Programming44.3 User Functions4.3.1 What Is a User Function?( 1 ) Overview of User FunctionsA u

Page 360 - 6.7 Register Lists

4.3 User Functions4.3.1 What Is a User Function?4-8( 2 ) Relationship between I/O Data for a Function and Registers in the FunctionThe X, Y, Z, and

Page 361 - 6.8 Tuning Panel

vMachine Controller MP900/MP2000 Series Distributed I/O Module User’s Manual, MECHATROLINK SystemSIE-C887-5.1Describes MECHATROLINK distributed I/O

Page 362 - Ladder drawing

4.3 User Functions4.3.2 Creating User Functions4-9Programming44.3.2 Creating User FunctionsThis section describes how to create a user function tha

Page 363 - MPE720 version 6

4.3 User Functions4.3.2 Creating User Functions4-103. Select Function input definition under I/O definition and enter the following information. 4.

Page 364 - Troubleshooting

4.3 User Functions4.3.2 Creating User Functions4-11Programming46. Create the following ladder program in the drawing of the FUNC01 user function tha

Page 365

4.3 User Functions4.3.3 Calling a User Function4-124.3.3 Calling a User FunctionYou can call a user function by using a FUNC instruction in the lad

Page 366 - 7.2 Indicator Status

4.4 Registers (Variables)4.4.1 What Are Registers?4-13Programming44.4 Registers (Variables)4.4.1 What Are Registers?Registers are areas that store

Page 367 - 7.3 Problem Classifications

4.4 Registers (Variables)4.4.2 Register Types4-144.4.2 Register Types( 1 ) Global RegistersGlobal registers are variables that are shared by ladder

Page 368

4.4 Registers (Variables)4.4.2 Register Types4-15Programming4( 2 ) Local RegistersLocal registers are valid within only one specific program. The lo

Page 369 - 7.4 Detailed Troubleshooting

4.4 Registers (Variables)4.4.2 Register Types4-16( 3 ) Precautions When Using Local Registers within a User FunctionWhen you call a user function, c

Page 370

4.4 Registers (Variables)4.4.3 Data Types4-17Programming44.4.3 Data Types( 1 ) List of Data TypesThere are various data types that you can use depe

Page 371 -  Troubleshooting Method 2

4.4 Registers (Variables)4.4.3 Data Types4-18( 2 ) Precautions for Operations Using Different Data TypesIf you perform an operation using different

Page 372 - 7.4.2 I/O Errors

vi Visual AidsThe following visual aids are used to indicate certain types of information for easier reference. Use these to help you understand

Page 373 - 7.4.3 Watchdog Timer Errors

4.4 Registers (Variables)4.4.4 Index Registers (i, j)4-19Programming44.4.4 Index Registers (i, j)There are two index registers, i and j, that are u

Page 374 - 7.4.5 System Errors

4.4 Registers (Variables)4.4.4 Index Registers (i, j)4-20A programming example that uses indexed registers is shown below.This example uses index j

Page 375 - Appendix A

4.5 Table Data4.5.1 What Is Table Data?4-21Programming44.5 Table Data4.5.1 What Is Table Data?Table data is data that is managed in tabular form.

Page 376 - A.1 System Service Registers

4.5 Table Data4.5.2 Creating Table Data4-22 Procedure to Create Table Data1. Select File - Open − Define Data Table − Data Table Map in the Module

Page 377 - ( 2 ) Exclusive to DWG.H Only

4.6 Transferring Data4-23Programming44.6 Transferring DataYou can perform one of the four operations that are shown in the following figure to trans

Page 378 - ( 3 ) Exclusive to DWG.L Only

4.7 Setting the High-speed/Low-speed Scan Times4-244.7 Setting the High-speed/Low-speed Scan Times( 1 ) What Are the Scan Times?With an MP2000-serie

Page 379 - System Registers

4.8 Advanced Programming4.8.1 Motion Programs4-25Programming44.8 Advanced Programming4.8.1 Motion ProgramsA motion program is written in a text-ba

Page 380 - A.2 System Status

4.8 Advanced Programming4.8.2 C-language Programs4-264.8.2 C-language ProgramsYou can use the MP2000-series Machine Controller Embedded C-language

Page 381 - A.3 System Error Status

4.8 Advanced Programming4.8.3 Security4-27Programming44.8.3 SecurityMPE720 version 6 has the following security features. You can use these securit

Page 382 - A.3 System Error Status

4.8 Advanced Programming4.8.4 Tracing4-284.8.4 TracingMPE720 version 6 has three trace modes. Realtime TracingYou can monitor specified registers

Page 383 - Index error

viiSafety PrecautionsThis section provides important precautions that must be observed in ladder programming. Before you start to program, carefully

Page 384

5-1Instructions55InstructionsThis chapter describes the ladder programming instructions in detail.5.1 How to Read the Instructions - - - - - - - - -

Page 385

5-25.4 Logic Operations and Comparison Instructions - - - - - - - - - - - - - - - - - - - 5-635.4.1 Inclusive AND (AND) - - - - - - - - - - - -

Page 386 - A.7 System I/O Error Status

5-3Instructions55.8.7 First-order Lag (LAG) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-1615.8.8 Phas

Page 387

5.1 How to Read the Instructions 5-45.1 How to Read the InstructionsThis chapter describes each instruction using the following format.( 1 ) Operat

Page 388 - A.9 Interrupt Status

5.2 Relay Circuit Instructions5.2.1 NO Contact (NOC)5-5Instructions55.2 Relay Circuit Instructions5.2.1 NO Contact (NOC)( 1 ) OperationThe NOC ins

Page 389 - A.10 Module Information

5.2 Relay Circuit Instructions5.2.2 NC Contact (NCC)5-65.2.2 NC Contact (NCC)( 1 ) OperationThe NCC instruction outputs OFF whenever the bit with t

Page 390 - A.11 MPU-01 System Status

5.2 Relay Circuit Instructions5.2.3 10-ms ON-Delay Timer (TON[10ms])5-7Instructions55.2.3 10-ms ON-Delay Timer (TON[10ms])( 1 ) OperationThe timer

Page 391

5.2 Relay Circuit Instructions5.2.3 10-ms ON-Delay Timer (TON[10ms])5-8( 3 ) Programming ExampleIn the following programming example, the set value

Page 392

5.2 Relay Circuit Instructions5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])5-9Instructions55.2.4 10-ms OFF-Delay Timer (TOFF[10ms])( 1 ) OperationThe ti

Page 393 - Appendix B

5.2 Relay Circuit Instructions5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])5-10( 3 ) Programming ExampleIn the following programming example, the set val

Page 394 - Programs

viiiWarranty( 1 ) Details of Warranty Warranty PeriodThe warranty period for a product that was purchased (hereinafter called “delivered product”

Page 395

5.2 Relay Circuit Instructions5.2.5 1-s ON-Delay Timer (TON[1s])5-11Instructions55.2.5 1-s ON-Delay Timer (TON[1s])( 1 ) OperationThe timer counts

Page 396 - 2. Click Select

5.2 Relay Circuit Instructions5.2.5 1-s ON-Delay Timer (TON[1s])5-12( 3 ) Programming ExampleIn the following programming example, the set value of

Page 397 - Appendix C

5.2 Relay Circuit Instructions5.2.6 1-s OFF-Delay Timer (TOFF[1s])5-13Instructions55.2.6 1-s OFF-Delay Timer (TOFF[1s])( 1 ) OperationThe timer cou

Page 398 -  Ladder Programming Example

5.2 Relay Circuit Instructions5.2.6 1-s OFF-Delay Timer (TOFF[1s])5-14( 3 ) Programming ExampleIn the following programming example, the set value o

Page 399 - C.2 Motion Program Control

5.2 Relay Circuit Instructions5.2.7 Rising-edge Pulses (ON-PLS)5-15Instructions55.2.7 Rising-edge Pulses (ON-PLS)( 1 ) OperationThe ON-PLS instruct

Page 400 -  Motion Programming Example

5.2 Relay Circuit Instructions5.2.7 Rising-edge Pulses (ON-PLS)5-16( 3 ) Programming ExampleThe DB000002 output coil turns ON for only one scan if t

Page 401

5.2 Relay Circuit Instructions5.2.8 Falling-edge Pulses (OFF-PLS)5-17Instructions55.2.8 Falling-edge Pulses (OFF-PLS)( 1 ) OperationThe OFF-PLS ins

Page 402 -  Procedure

5.2 Relay Circuit Instructions5.2.8 Falling-edge Pulses (OFF-PLS)5-18( 3 ) Programming ExampleThe DB000002 output coil turns ON for only one scan if

Page 403 - Appendix D

5.2 Relay Circuit Instructions5.2.9 Coil (COIL)5-19Instructions55.2.9 Coil (COIL)( 1 ) OperationThe COIL instruction sets the value of the bit at t

Page 404 - ( 1 ) Operators

5.2 Relay Circuit Instructions5.2.10 Set Coil (S-COIL)5-205.2.10 Set Coil (S-COIL)( 1 ) OperationThe S-COIL instruction sets the value of the bit a

Page 405 - ( 2 ) Operands

ix( 3 ) Suitability for Use1. It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that apply if the

Page 406

5.2 Relay Circuit Instructions5.2.11 Reset Coil (R-COIL)5-21Instructions55.2.11 Reset Coil (R-COIL)( 1 ) OperationThe R-COIL instruction sets the b

Page 407 - D.2 National Limitations

5.3 Numeric Operation Instructions5.3.1 Store (STORE)5-225.3 Numeric Operation Instructions5.3.1 Store (STORE)( 1 ) OperationThe input data is sto

Page 408 -  Arrays

5.3 Numeric Operation Instructions5.3.1 Store (STORE)5-23Instructions5( 3 ) Programming ExamplesIn the following programming examples, the input dat

Page 409 - Appendix E

5.3 Numeric Operation Instructions5.3.2 Add (ADD (+))5-245.3.2 Add (ADD (+))( 1 ) OperationInput data A and input data B are added and the result i

Page 410 - E.1 General Precautions

5.3 Numeric Operation Instructions5.3.2 Add (ADD (+))5-25Instructions5( 3 ) Programming ExamplesIn the following programming examples, input data A

Page 411

5.3 Numeric Operation Instructions5.3.3 Extended Add (ADDX (++))5-265.3.3 Extended Add (ADDX (++))( 1 ) OperationInput data A and input data B are

Page 412

5.3 Numeric Operation Instructions5.3.3 Extended Add (ADDX (++))5-27Instructions5( 3 ) Programming ExamplesIn the following programming examples, in

Page 413

5.3 Numeric Operation Instructions5.3.4 Subtract (SUB (−))5-285.3.4 Subtract (SUB (−))( 1 ) OperationInput data B is subtracted from input data A a

Page 414

5.3 Numeric Operation Instructions5.3.4 Subtract (SUB (−))5-29Instructions5• Storing the Output Data in MW00000 When Input Data A Is 10.5 and Input

Page 415

5.3 Numeric Operation Instructions5.3.5 Extended Subtract (SUBX (− −))5-305.3.5 Extended Subtract (SUBX (− −))( 1 ) OperationInput data B is subtra

Commentaires sur ces manuels

Pas de commentaire